Indian Statistical Institute, Bangalore

M. Math. Second Year First Semester - Number Theory Duration: 3 hours

Mid-Semester Exam

Date : Sept 10, 2014

Note: Each question carries 20 marks. Ans as many questions as you can.Max Marks: 100

- 1. (a) Show that, for positive integers m and n, the g.c.d of $2^m 1$ and $2^n 1$ is $2^{(m,n)} 1$, where (m,n) is the g.c.d of m and n.
 - (b) If $2^n + 1$ is a prime for some *n*, then show that *n* is a power of 2.
- 2. (a) Let p_n denotes the n^{th} prime in natural order. Then show that $p_{n+1} \leq p_1 \cdots p_n + 1$.
 - (b) Use part (a) to show that there is a constant c > 0 such that the prime counting function satisfies $\pi(x) \ge c \log \log x$ for all $x \ge 3$.
- 3. (a) Prove a necessary and sufficient condition on the odd prime p so that 2 is a square modulo p.
 - (b) If $n \geq 2$, then show that any prime factor of the n^{th} Fermat number F_n is $\equiv 1 \pmod{2^{n+2}}$.
- 4. (a) Let w be a complex cube root of unity. Then show that the ring Z[w] is a U.F.D.
 - (b) Find all the units of Z[w].
 - (c) Show that the ring $Z[\sqrt{5}]$ is not a U.F.D.
- 5. Prove that every rational number has exactly two simple continued fraction expansions.
- 6. Let $p_i, 1 \leq i \leq 5$, and $q_i, 1 \leq i \leq 5$, be the first five primes which are 1(mod4) and 3(mod4), respectively. Let A, B, C be the 5×5 matrices whose entries are the Legendre symbol $(\frac{p_i}{p_j}), (\frac{q_i}{q_j}), (\frac{p_i}{q_j})$, respectively. Compute these matrices.